论文标题
迭代的对数定律,用于二维随机Navier-Stokes方程
The Law of the Iterated Logarithm for Two-Dimensional Stochastic Navier-Stokes Equations
论文作者
论文摘要
在这里,我们实施了Azencott方法,以证明有界域中二维不可压缩的随机Navier-Stokes方程的中等偏差原理。随着应用的两种类型的迭代对数Khintchine古典类型的法律和Strassen的紧凑型迭代对数定律。
Here we implement the Azencott method to prove the moderate deviation principle for the two-dimensional incompressible stochastic Navier-Stokes equations in a bounded domain. As applications two types of the law of the iterated logarithm Khintchine Classical type and the Strassen's compact law of iterated logarithm, are proved.