论文标题
具有有限自动形态组的K3表面地图集
An atlas of K3 surfaces with finite automorphism group
论文作者
论文摘要
我们研究了K3表面$ x $的几何形状,其中有有限的数字自动形态和PICARD编号$ \ geq 3 $。我们将Nikulin和Vinberg分类的这些表面描述为简单表面的双层覆盖物或嵌入在投射空间中。此外,我们研究了其有限$(-2)$ - 曲线的配置。
We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves.