论文标题

纯广告中的气缸过渡幅度$ _3 $重力

Cylinder transition amplitudes in pure AdS$_3$ Gravity

论文作者

Garbarz, Alan, Kim, Jayme, Porrati, Massimo

论文摘要

具有圆柱拓扑的间距表面可以通过纯ADS3重力中的各种规范变量来描述。每个都是由一个真实的坐标和一个真实动量制成的。在两种相关情况下,哈密顿量可以是$ h = 0 $,也可以是非零的,我们显示映射到另一个的规范变换。在选择规范坐标时,其中之一是圆柱体方面$ Q $,它会及时地进行非试验。该方面的时间依赖性是时间$ t $和“角动量” $ j $的分析函数。通过$ t $和$ j $的分析延续,我们获得了欧几里得进化,可以在几何上描述为在3D双曲线空间内部的圆柱体的运动,该圆柱体由两个“圆顶”(即半球)界定,这在拓扑上是固体的。我们发现,对于给定的$ j $,欧几里得进化无法将初始方面与任意的最终方面联系起来。此外,有许多无限的欧几里得轨迹连接到任何两个允许的初始和最终方面。我们以两种独立的方式计算过渡幅度。首先,通过准确求解时间依赖性的schrödinger方程,然后以明智的方式总结所有鞍座的贡献,我们讨论了为什么两种方法相互一致。

A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either $H=0$ or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect $q$, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time $t$ and an "angular momentum" $J$. By analytic continuation in both $t$ and $J$ we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two "domes" (i.e. half spheres), which is topologically a solid torus. We find that for a given $J$ the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源