论文标题
$ p $ -Zassenhaus的过滤,一个免费的小组和洗牌关系
The $p$-Zassenhaus Filtration of a Free Profinite Group and Shuffle Relations
论文作者
论文摘要
对于Prime Number $ P $和一个免费的Profinite Group $ S $,以$ x $为基础,让$ s _ {(n,p)} $,$ n = 1,2,\ ldots,$是$ p $ -zassenhaus $ s $。对于$ p> n $,我们在$ x $上的shuffle代数中给出了同类式组$ h^2(s/s _ {(n,p)} $ h^2(s/s _ {(n,p)}})的单词组合描述。我们为该同一个同胞组提供了自然的线性基础,该基础是由lyndon单词引起的unitriangular表示构建的。
For a prime number $p$ and a free profinite group $S$ on the basis $X$, let $S_{(n,p)}$, $n=1,2,\ldots,$ be the $p$-Zassenhaus filtration of $S$. For $p>n$, we give a word-combinatorial description of the cohomology group $H^2(S/S_{(n,p)},\mathbb{Z}/p)$ in terms of the shuffle algebra on $X$. We give a natural linear basis for this cohomology group, which is constructed by means of unitriangular representations arising from Lyndon words.