论文标题
本地点缺陷和低$ p $掺杂效率$ MG_2(SI,SN)$ solid Solutions:一种混合密度功能研究
Native point defects and low $p$-doping efficiency in $Mg_2 (Si,Sn)$ solid solutions: A hybrid-density functional study
论文作者
论文摘要
我们执行混合密度功能计算,以研究本机点缺陷的带电缺陷形成能量$ MG_2 SI $,$ MG_2 SN $及其实心解决方案。发现通过杂交密度功能校正带隙校正对于确定这些材料中带电的缺陷密度至关重要。对于$ mg_2 si $,$ mg $的间隙是主导的,并提供了无意的$ n $ type电导率。此外,由于$ mg $空缺可以在$ mg $ -poor $ $ mg_2 sn $中占主导地位,$ p $ -type电导率对于$ mg_2 sn $是可能的。但是,存在低层能量缺陷的存在,例如$ mg_ {sn}^{1+} $和$ i_ {mg}^{2+} $ in $ mg_2 sn $及其扩散会导致低$ p $ p $ p $ -p $ -p $ -p $ -p $ -p $ -p $ -p $ -p $ -p $ p $ -p $ -p $ pope的掺杂效率和热级别。我们的结果表明,除了外部兴奋剂策略外,还需要将$ MG_2 SI $与$ MG_2 SN $合金降低到$ mg $ $ -MG $ -DO的条件下,以增强$ p $ type的电导率,费用更少。
We perform hybrid-density functional calculations to investigate the charged defect formation energy of native point defects in $Mg_2 Si$, $Mg_2 Sn$, and their solid solutions. The band gap correction by hybrid-density functional is found to be critical to determine the charged defect density in these materials. For $Mg_2 Si$, $Mg$ interstitials are dominant and provide unintentional $n$-type conductivity. Additionally, as the $Mg$ vacancies can dominate in $Mg$-poor $Mg_2 Sn$, $p$-type conductivity is possible for $Mg_2 Sn$. However, the existence of low formation energy defects such as $Mg_{Sn}^{1+}$ and $I_{Mg}^{2+}$ in $Mg_2 Sn$ and their diffusion can cause severe charge compensation of hole carriers resulting in low $p$-type doping efficiency and thermal degradation. Our results indicate that, in addition to the extrinsic doping strategy, alloying of $Mg_2 Si$ with $Mg_2 Sn$ under $Mg$-poor conditions would be necessary to enhance the $p$-type conductivity with less charge compensation.