论文标题

走向计算机视觉粒子流

Towards a Computer Vision Particle Flow

论文作者

Di Bello, Francesco Armando, Ganguly, Sanmay, Gross, Eilam, Kado, Marumi, Pitt, Michael, Santi, Lorenzo, Shlomi, Jonathan

论文摘要

在高能量物理实验中,粒子流(PFLO)算法旨在提供最佳的重建,以对碰撞期间检测器接受中产生的颗粒的性质和运动学特性进行最佳重建。 Pflow算法的核心是使用带电颗粒跟踪设备的互补测量来区分中性颗粒的热量计能量沉积物和带电颗粒的量子,从而提供了对粒子含量和运动学的卓越测量。在本文中,提出了基于量热计图像的Pflow算法基本方面的计算机视觉方法。对艺术状态深度学习技术进行了比较研究。在与带电颗粒的沉积物的大重叠的情况下,获得了中性颗粒量热能量沉积物的重建。还使用超分辨率技术获得具有增强剂粒度的量热计图像。

In High Energy Physics experiments Particle Flow (PFlow) algorithms are designed to provide an optimal reconstruction of the nature and kinematic properties of the particles produced within the detector acceptance during collisions. At the heart of PFlow algorithms is the ability to distinguish the calorimeter energy deposits of neutral particles from those of charged particles, using the complementary measurements of charged particle tracking devices, to provide a superior measurement of the particle content and kinematics. In this paper, a computer vision approach to this fundamental aspect of PFlow algorithms, based on calorimeter images, is proposed. A comparative study of the state of the art deep learning techniques is performed. A significantly improved reconstruction of the neutral particle calorimeter energy deposits is obtained in a context of large overlaps with the deposits from charged particles. Calorimeter images with augmented finer granularity are also obtained using super-resolution techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源