论文标题

新的,相对论的粘性水动力学的多极溶液

New, multipole solutions of relativistic, viscous hydrodynamics

论文作者

Csorgo, T., Kasza, G.

论文摘要

我们提出了一类新的相对论耗散流体动力学的精确火球解决方案。我们描述了相对论的Navier-Stokes和以色列 - 斯图尔特理论的新精确解决方案,用于任意剪切和散装粘度以及其他耗散系数。这些解决方案的共同特性是相对论哈勃流的存在。我们的结果概括了这些类别中最近发现的第一个解决方案,即声音,剪切和散装粘度的任意温度速度,热传导和初始温度曲线的波动。这些解决方案是因果关系,不仅稳定,而且渐近地完美。运动体积粘度中的强峰值峰值被证明可模仿一阶相变的效果。因此,发现新的渐近完美解决方案非常丰富,但与此同时,由于解决方案受到哈勃流动场的球形对称性的限制,因此大多数学术性的解决方案。

We present a new class of exact fireball solutions of relativistic dissipative hydrodynamics. We describe new exact solutions both for the relativistic Navier-Stokes and for the Israel-Stewart theory, for arbitrary shear and bulk viscosities, as well as for other dissipative coefficients. The common property of these solutions is the presence of the relativistic Hubble flow. Our results generalize the recently found first solution in these classes, for an arbitrary temperature dependent speed of sound, shear and bulk viscosity, heat conduction and fluctuating initial temperature profiles. These solutions are causal and not only stable but also asymptotically perfect. A strong and narrow peak in the kinematic bulk viscosity is shown to imitate the effects of a first order phase transition. The new class of asymptotically perfect solutions is thus found to be very rich, but at the same time mostly academic as the solutions are limited by the spherical symmetry of the Hubble flow field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源