论文标题
Z = 6.62时QSO的Subaru中分辨率光谱:三个校正测试
Subaru medium-resolution spectra of a QSO at z=6.62: Three reionization tests
论文作者
论文摘要
调查高红移类星体(QSO)的Gunn-Peterson槽是揭示宇宙电离的有力方法。作为这样的尝试之一,我们进行了一系列分析,以检查使用最高的红移QSO之一观察到的吸收线PSO J006.1240+39.2219,我们以前在z = 6.62时发现了这些吸收线。使用Subaru望远镜,我们获得了中等分辨率的光谱,总暴露时间为7.5小时。我们在不同的红移箱中计算出LY $α$变速箱,以确定近区域半径和光学深度为5.6 $ <$ <$ z $ <$ 6.5。我们发现LY $α$传输突然变化为5.75 $ <$ <$ <$ <$ 5.86,这与文献的结果一致。 QSO的近区域半径为5.79 $ \ pm $ 0.09 $ p $ mpc,在先前研究中测得的其他QSO的近区域半径内。我们还分析了深度间隙分布,以探测超出Gunn-Peterson槽饱和极限的中性氢分数。我们将深色差距的测量扩展到5.7 $ <$ z $ <$ 6.3。我们发现,间隙宽度随着红移的增加而增加,这表明在较高的红移下更中性宇宙。但是,这些测量值在很大程度上取决于连续建模。作为连续模型的尝试,我们还执行了深色像素计数分析,以找到$ \ langle x _ {\ rm h i} \ rangle \ sim $ 0.6(0.8)$ z <$ 5.8($ z <$ 5.8($ z> $ 5.8)的上限。基于此QSO的所有三个分析都表明,越来越中性的氢向更高的红移,增加了最高z $ \ sim $ 6.5的宝贵测量。
Investigating the Gunn-Peterson trough of high redshift quasars (QSOs) is a powerful way to reveal the cosmic reionization. As one of such attempts, we perform a series of analyses to examine the absorption lines observed with one of the highest redshift QSOs, PSO J006.1240+39.2219, which we previously discovered at z = 6.62. Using the Subaru telescope, we obtained medium-resolution spectrum with a total exposure time of 7.5 hours. We calculate the Ly$α$ transmission in different redshift bins to determine the near zone radius and the optical depth at 5.6$<$z$<$6.5. We find a sudden change in the Ly$α$ transmission at 5.75$<$z$<$5.86, which is consistent with the result from the literature. The near zone radius of the QSO is 5.79$\pm$0.09 $p$Mpc, within the scatter of the near zone radii of other QSOs measured in previous studies. We also analyze the dark gap distribution to probe the neutral hydrogen fractions beyond the saturation limit of the Gunn-Peterson trough. We extend the measurement of the dark gaps to 5.7$<$z$<$6.3. We find that the gap widths increase with increasing redshifts, suggesting more neutral Universe at higher redshifts. However, these measurements strongly depend on the continuum modeling. As a continuum model-free attempt, we also perform the dark-pixel counting analysis, to find the upper limit of $\langle x_{\rm H I} \rangle \sim$0.6 (0.8) at $z<$5.8 ($z>$5.8). All three analyses based on this QSO show increasingly neutral hydrogen towards higher redshifts, adding precious measurements up to z$\sim$6.5.