论文标题

j $ \ hat {\ text {a}} $ a-net:联合面部动作单元检测和通过自适应注意

J$\hat{\text{A}}$A-Net: Joint Facial Action Unit Detection and Face Alignment via Adaptive Attention

论文作者

Shao, Zhiwen, Liu, Zhilei, Cai, Jianfei, Ma, Lizhuang

论文摘要

面部动作单元(AU)检测和面部对齐是两个高度相关的任务,因为面部标志可以提供精确的AU位置,以促进有意义的局部特征进行AU检测。但是,大多数现有的AU检测工程通过将面部对齐视为预处理,并经常使用地标预定了每个AU的固定区域或注意力,从而独立处理这两个任务。在本文中,我们提出了一个新颖的端到端深度学习框架,用于联合AU检测和面对对齐,这之前尚未探索。特别是,首先要学习多尺度共享功能,而面部对齐的高级特征被馈入AU检测。此外,为了提取精确的本地特征,我们提出了一个自适应注意力学习模块,以适应每个AU的注意力图。最后,将组装的本地功能与面部对齐功能和全局特征集成在一起,以供AU检测。广泛的实验表明,我们的框架(i)显着优于最先进的AU检测方法,在具有挑战性的BP4D,DISFA,GFT和BP4D+基准上,(ii)可以自适应地捕获每个AU(III)的不规则区域(III)在面部竞争性绩效中也可以在竞争中竞争,并在不正常的情况下(IV)和不良效果。我们方法的代码可在https://github.com/zhiwenshao/pytorch-jaanet上获得。

Facial action unit (AU) detection and face alignment are two highly correlated tasks, since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. However, most existing AU detection works handle the two tasks independently by treating face alignment as a preprocessing, and often use landmarks to predefine a fixed region or attention for each AU. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared feature is learned firstly, and high-level feature of face alignment is fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment feature and global feature for AU detection. Extensive experiments demonstrate that our framework (i) significantly outperforms the state-of-the-art AU detection methods on the challenging BP4D, DISFA, GFT and BP4D+ benchmarks, (ii) can adaptively capture the irregular region of each AU, (iii) achieves competitive performance for face alignment, and (iv) also works well under partial occlusions and non-frontal poses. The code for our method is available at https://github.com/ZhiwenShao/PyTorch-JAANet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源