论文标题

完全污点的明确熵稳定方案,用于可压缩的Euler和Navier-Stokes方程

Fully-Discrete Explicit Locally Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations

论文作者

Ranocha, Hendrik, Dalcin, Lisandro, Parsani, Matteo

论文摘要

最近,已经开发出松弛方法来确保保存普通微分方程的解决方案的单个全局功能。在这里,我们概括了这种方法,以保证有限的许多凸功能(熵)的局部熵不等式,并将结果方法应用于可压缩的Euler和Navier-Stokes方程。基于熵保守或耗散性半差的非结构化$ hp $适应性SSDC框架,使用逐个局部和同时进行的同时置换式运算符,我们开发了第一个对可压缩流体稳定的可压缩液体稳定的可压缩液体稳定的可压缩液体稳定的易位的计算稳定性的eveptization,我们开发了第一个离散的运算术,该方案是完全不合时宜的。标量方程每个元素,并任意高阶精度在空间和时间上。我们证明了一组增加复杂性的测试案例的全局部明确熵稳定求解器的准确性和鲁棒性。

Recently, relaxation methods have been developed to guarantee the preservation of a single global functional of the solution of an ordinary differential equation. Here, we generalize this approach to guarantee local entropy inequalities for finitely many convex functionals (entropies) and apply the resulting methods to the compressible Euler and Navier-Stokes equations. Based on the unstructured $hp$-adaptive SSDC framework of entropy conservative or dissipative semidiscretizations using summation-by-parts and simultaneous-approximation-term operators, we develop the first discretizations for compressible computational fluid dynamics that are primary conservative, locally entropy stable in the fully discrete sense under a usual CFL condition, explicit except for the parallelizable solution of a single scalar equation per element, and arbitrarily high-order accurate in space and time. We demonstrate the accuracy and the robustness of the fully-discrete explicit locally entropy-stable solver for a set of test cases of increasing complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源