论文标题
使用$β$ -VAE的潜在空间在多标签数据集中脱离分布检测
Out-of-Distribution Detection in Multi-Label Datasets using Latent Space of $β$-VAE
论文作者
论文摘要
在各种基于感知的自主权任务中,诸如图像分割,对象检测,端到端驾驶等各种基于知觉的自主权任务中,都广泛使用了学习能力的组件(LEC)。这些组件经过培训,具有大型图像数据集的多模式因素,例如天气条件,时间,交通密度等。预测。在训练过程中未见因素的图像通常称为分布(OOD)。对于安全的自主权,重要的是要识别OOD图像,以便可以执行合适的缓解策略。 SVM和SVDD等经典的一级分类器用于执行OOD检测。但是,这些数据集中图像上附加的多个标签限制了这些技术的直接应用。我们使用$β$ - 变量自动编码器($β$ -VAE)的潜在空间来解决这个问题。我们使用这样一个事实,即由适当选择的$β$ -VAE产生的紧凑型潜在空间将在一些潜在变量中编码有关这些因素的信息,并且可以用于计算廉价的检测。我们在Nuscenes数据集上评估了我们的方法,我们的结果表明,$β$ -VAE的潜在空间对生成因子值的编码变化很敏感。
Learning Enabled Components (LECs) are widely being used in a variety of perception based autonomy tasks like image segmentation, object detection, end-to-end driving, etc. These components are trained with large image datasets with multimodal factors like weather conditions, time-of-day, traffic-density, etc. The LECs learn from these factors during training, and while testing if there is variation in any of these factors, the components get confused resulting in low confidence predictions. The images with factors not seen during training is commonly referred to as Out-of-Distribution (OOD). For safe autonomy it is important to identify the OOD images, so that a suitable mitigation strategy can be performed. Classical one-class classifiers like SVM and SVDD are used to perform OOD detection. However, the multiple labels attached to the images in these datasets, restricts the direct application of these techniques. We address this problem using the latent space of the $β$-Variational Autoencoder ($β$-VAE). We use the fact that compact latent space generated by an appropriately selected $β$-VAE will encode the information about these factors in a few latent variables, and that can be used for computationally inexpensive detection. We evaluate our approach on the nuScenes dataset, and our results shows the latent space of $β$-VAE is sensitive to encode changes in the values of the generative factor.