论文标题

DCE-MRI的暂时性HUBER正则化

Temporal Huber regularization for DCE-MRI

论文作者

Hanhela, Matti, Kettunen, Mikko, Gröhn, Olli, Vauhkonen, Marko, Kolehmainen, Ville

论文摘要

动态对比增强的磁共振成像(DCE-MRI)用于研究微血管结构和组织灌注。在DCE-MRI中,将基于Gadolinium的造影剂的大推注注入血流中,并从对比度流动引起的时空变化中,根据MRI数据的时间序列估计。通常只能通过使用成像协议来获得足够的时间分辨率,该成像协议在时间序列中为每个图像生成不足的数据。这导致了基于压缩传感的图像重建方法的流行,其中时间序列中的所有图像都是同时重建的,并且图像之间的时间耦合通过促进正则化功能的稀疏性引入了问题。我们建议将Huber惩罚用于DCE-MRI中的时间正则化,并将其与总变化,总体变异和基于平滑度的时间正则模型进行比较。我们还研究了空间正则化对重建的效果,并将重建精度与不同的时间分辨率进行比较,这是由于不同的采样而导致的。使用大鼠脑标本中的模拟和实验性径向黄金角度DCE-MRI数据测试了这些方法。结果表明,Huber正则化具有基于总变化的模型的相似重建精度,但是计算时间明显更快。

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to study microvascular structure and tissue perfusion. In DCE-MRI a bolus of gadolinium based contrast agent is injected into the blood stream and spatiotemporal changes induced by the contrast agent flow are estimated from a time series of MRI data. Sufficient time resolution can often only be obtained by using an imaging protocol which produces undersampled data for each image in the time series. This has led to the popularity of compressed sensing based image reconstruction approaches, where all the images in the time series are reconstructed simultaneously, and temporal coupling between the images is introduced into the problem by a sparsity promoting regularization functional. We propose the use of Huber penalty for temporal regularization in DCE-MRI, and compare it to total variation, total generalized variation and smoothness based temporal regularization models. We also study the effect of spatial regularization to the reconstruction and compare the reconstruction accuracy with different temporal resolutions due to varying undersampling. The approaches are tested using simulated and experimental radial golden angle DCE-MRI data from a rat brain specimen. The results indicate that Huber regularization produces similar reconstruction accuracy with the total variation based models, but the computation times are significantly faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源