论文标题
无监督的域通过结构正规化的深群集适应
Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering
论文作者
论文摘要
无监督的域适应性(UDA)是为目标域上的未标记数据做出预测,给定在源域上标记的数据,该源域的分布从目标域转移。主流UDA方法学习两个域之间的对齐功能,因此可以在源特征上训练的分类器很容易应用于目标。但是,这种转移策略具有损害目标数据内在歧视的潜在风险。为了减轻这种风险,我们是由结构域相似性的假设引起的,并建议通过目标数据的判别聚类直接发现内在的目标歧视。我们使用呈现在我们假定的结构域相似性上的结构源正规化来限制聚类溶液。从技术上讲,我们使用基于深网的歧视性聚类的灵活框架,从而最大程度地减少了网络的预测标签分布与引入的辅助框架之间的KL差异。用源数据的地面真相标签替换辅助分布,通过简单的联合网络培训策略实现结构源正则化。我们将我们提出的方法称为结构正则化的深群集(SRDC),在其中我们还通过中间网络特征的聚类来增强目标歧视,并通过对较不发散源示例的软选择来增强结构正则化。仔细的消融研究表明我们提出的SRDC的功效。值得注意的是,没有明确的域对齐,SRDC在三个UDA基准测试上的所有现有方法都优于所有现有方法。
Unsupervised domain adaptation (UDA) is to make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution shifts from the target one. Mainstream UDA methods learn aligned features between the two domains, such that a classifier trained on the source features can be readily applied to the target ones. However, such a transferring strategy has a potential risk of damaging the intrinsic discrimination of target data. To alleviate this risk, we are motivated by the assumption of structural domain similarity, and propose to directly uncover the intrinsic target discrimination via discriminative clustering of target data. We constrain the clustering solutions using structural source regularization that hinges on our assumed structural domain similarity. Technically, we use a flexible framework of deep network based discriminative clustering that minimizes the KL divergence between predictive label distribution of the network and an introduced auxiliary one; replacing the auxiliary distribution with that formed by ground-truth labels of source data implements the structural source regularization via a simple strategy of joint network training. We term our proposed method as Structurally Regularized Deep Clustering (SRDC), where we also enhance target discrimination with clustering of intermediate network features, and enhance structural regularization with soft selection of less divergent source examples. Careful ablation studies show the efficacy of our proposed SRDC. Notably, with no explicit domain alignment, SRDC outperforms all existing methods on three UDA benchmarks.