论文标题
使用任意数量的诱饵的有限键长度测量设备依赖性量子密钥分布的安全性
Security Of Finite-Key-Length Measurement-Device-Independent Quantum Key Distribution Using Arbitrary Number Of Decoys
论文作者
论文摘要
在量子密钥分布中,测量设备独立和诱饵状态技术使两种合作社能够分别使用不完美的测量设备和弱泊松来源建立共享的秘密密钥。到目前为止,调查尚不全面,因为它们限制在小于或等于四个诱饵州。此外,其中许多涉及纯数值研究。在这里,我报告了一般安全证明,可适用于任何固定数量的诱饵状态和任何固定的原始密钥长度。这里涉及的两个关键想法。第一个是反转公式在Vandermonde矩阵中重复应用,以在某些产率和错误率上获得各种界限。第二个是使用最近证明的McDiarmid不平等的概括。这些技术提高了BB84方案的测量设备独立版本的最佳确保关键率,至少提高了1.25次,并增加两个合作剂之间的可行距离,如果没有量子重复的量子,则有$ 10^{10} $ Photon Pulse Paper,从略小于60 km到略大于130 km。
In quantum key distribution, measurement-device-independent and decoy-state techniques enable the two cooperative agents to establish a shared secret key using imperfect measurement devices and weak Poissonian sources, respectively. Investigations so far are not comprehensive as they restrict to less than or equal to four decoy states. Moreover, many of them involves pure numerical studies. Here I report a general security proof that works for any fixed number of decoy states and any fixed raw key length. The two key ideas involved here. The first one is the repeated application of the inversion formula for Vandermonde matrix to obtain various bounds on certain yields and error rates. The second one is the use of a recently proven generalization of the McDiarmid inequality. These techniques rise the best provably secure key rate of the measurement-device-independent version of the BB84 scheme by at least 1.25 times and increase the workable distance between the two cooperative agents from slightly less than 60 km to slightly greater than 130 km in case there are $10^{10}$ photon pulse pair sent without a quantum repeater.