论文标题
超低分辨率RF动力加速度计,用于警告住院的患者床出口
Super Low Resolution RF Powered Accelerometers for Alerting on Hospitalized Patient Bed Exits
论文作者
论文摘要
瀑布会带来严重的后果,并且在急诊医院和照顾老年人的疗养院中普遍存在。大多数瀑布发生在卧室和床附近。采取技术干预措施,以减轻下降的风险,以自动监控床外事件,并随后警告医疗保健人员及时提供监督。我们观察到,与患者活动有关的频域信息主要存在于非常低的频率中。因此,我们认识到使用低分辨率加速度传感方式的潜力与传统的MEMS(微电动机械系统)加速度计相反。因此,我们研究了一种无电的传感模式,使用低成本无线射频识别(RFID)技术,有可能方便地整合到服装中,例如医院礼服。我们设计并构建一个基于被动加速度计的RFID传感器实施例--- ID传感器---用于我们的研究。传感器设计允许根据患者上半身的运动来从唯一的RFID标签标识符的变化率中得出超低分辨率加速度数据。我们研究了两个卷积神经网络体系结构,用于从仅RFID的仅数据流中学习,并将性能与传统的浅层分类器与工程功能进行比较。我们评估了23名住院老年患者的表现。我们首次证明:i)嵌入在RF驱动的ID传感器数据流中的低分辨率加速度数据可以为活动识别提供可行的方法; ii)可以使用完全卷积的网络体系结构从仅RAW RFID数据流中有效地了解高度歧视的功能。
Falls have serious consequences and are prevalent in acute hospitals and nursing homes caring for older people. Most falls occur in bedrooms and near the bed. Technological interventions to mitigate the risk of falling aim to automatically monitor bed-exit events and subsequently alert healthcare personnel to provide timely supervisions. We observe that frequency-domain information related to patient activities exist predominantly in very low frequencies. Therefore, we recognise the potential to employ a low resolution acceleration sensing modality in contrast to powering and sensing with a conventional MEMS (Micro Electro Mechanical System) accelerometer. Consequently, we investigate a batteryless sensing modality with low cost wirelessly powered Radio Frequency Identification (RFID) technology with the potential for convenient integration into clothing, such as hospital gowns. We design and build a passive accelerometer-based RFID sensor embodiment---ID-Sensor---for our study. The sensor design allows deriving ultra low resolution acceleration data from the rate of change of unique RFID tag identifiers in accordance with the movement of a patient's upper body. We investigate two convolutional neural network architectures for learning from raw RFID-only data streams and compare performance with a traditional shallow classifier with engineered features. We evaluate performance with 23 hospitalized older patients. We demonstrate, for the first time and to the best of knowledge, that: i) the low resolution acceleration data embedded in the RF powered ID-Sensor data stream can provide a practicable method for activity recognition; and ii) highly discriminative features can be efficiently learned from the raw RFID-only data stream using a fully convolutional network architecture.