论文标题
附录到:绝对中微子质量及其订购的全球限制
Addendum to: Global constraints on absolute neutrino masses and their ordering
论文作者
论文摘要
我们重新审视我们以前的工作[物理学。 Rev. D 95,096014(2017)]其中中微子振荡和非振荡数据在标准框架中与三个中微子家族进行了分析,以限制其绝对质量并探究其订购(正常,不或倒置,IO,IO,IO)。我们包括更新的振荡结果,以讨论最适合并允许两个平方的质量差异$δm^2 $和$δm^2 $,三个混合角度$θ_{12} $,$θ_{23} $和$θ_{13} $和$θ_{13} $,以及对CP-violation $δ$Δ$Δ$Δ $Δχ^2 = 10.0 $。然后,我们从β衰减,中微子双β衰减(如果中微子为Majorana)以及各种宇宙学输入变体(在数据或模型中)考虑了来自中微子的双β衰变(如果是中微子)的非振荡数据,从而导致结果称为默认,积极和保守的结果。在默认选项中,我们从非振荡数据中获得额外的贡献$Δχ^2 = 2.2 $有利于NO,并且上微子质量$σ<0.15 $ ev的上微子额度为$2σ$;通过宇宙学主导的这两种结果都可以分别使用更具侵略性或保守的选择来增强或削弱。考虑到这种变化,我们发现所有(振荡和非振荡)中微子数据的组合有利于$3.2-3.7σ$的水平,并且该$σ$在$σ<0.12-0.69 $ ev中的$2σ$级别约束。该允许范围的上边缘对应于有效的$β$ -decay中微子质量$m_β=σ/3 = 0.23 $ eV,在Katrin实验的灵敏度前沿。
We revisit our previous work [Phys. Rev. D 95, 096014 (2017)] where neutrino oscillation and nonoscillation data were analyzed in the standard framework with three neutrino families, in order to constrain their absolute masses and to probe their ordering (either normal, NO, or inverted, IO). We include updated oscillation results to discuss best fits and allowed ranges for the two squared mass differences $δm^2$ and $Δm^2$, the three mixing angles $θ_{12}$, $θ_{23}$ and $θ_{13}$, as well as constraints on the CP-violating phase $δ$, plus significant indications in favor of NO vs IO at the level of $Δχ^2=10.0$. We then consider nonoscillation data from beta decay, from neutrinoless double beta decay (if neutrinos are Majorana), and from various cosmological input variants (in the data or the model) leading to results dubbed as default, aggressive, and conservative. In the default option, we obtain from nonoscillation data an extra contribution $Δχ^2 = 2.2$ in favor of NO, and an upper bound on the sum of neutrino masses $Σ< 0.15$ eV at $2σ$; both results - dominated by cosmology - can be strengthened or weakened by using more aggressive or conservative options, respectively. Taking into account such variations, we find that the combination of all (oscillation and nonoscillation) neutrino data favors NO at the level of $3.2-3.7σ$, and that $Σ$ is constrained at the $2σ$ level within $Σ< 0.12-0.69$ eV. The upper edge of this allowed range corresponds to an effective $β$-decay neutrino mass $m_β= Σ/3 = 0.23$ eV, at the sensitivity frontier of the KATRIN experiment.