论文标题

高斯工艺建模用于高阶精确自适应网状细化延长的应用

An Application of Gaussian Process Modeling for High-order Accurate Adaptive Mesh Refinement Prolongation

论文作者

Reeves, Steven I., Lee, Dongwook, Reyes, Adam, Graziani, Carlo, Tzeferacos, Petros

论文摘要

我们提出了一种新的无多项式延长方案,用于自适应网格细化(AMR)模拟可压缩和不可压缩的计算流体动力学。新方法是使用基于多维内核的高斯过程(GP)延长模型构建的。该方案的公式灵感来自A. Reyes等人引入的GP方法。 (使用高斯工艺建模进行流体动力学模拟的新型高阶方法,《科学计算杂志》,76(2017),443-480;与GP-WENO的可变高阶冲击有限差异方法,计算物理学杂志,381(2019),189-217)。在本文中,我们将先前的GP插值和重建扩建到基于GP的新的AMR延长方法,该方法可在AMR网格层次结构上提供高阶精确延长数据从粗网格到细网格。在可压缩流量模拟中,需要特别注意以稳定的方式处理冲击和不连续性。为了实现这一目标,我们使用A. Reyes等人在先前的GP工作中开发的基于GP的平滑度指标利用了冲击处理策略。我们证明了使用AMREX库中GP-AMR方法在一系列测试套件中的功效,其中已实现了GP-AMR方法。

We present a new polynomial-free prolongation scheme for Adaptive Mesh Refinement (AMR) simulations of compressible and incompressible computational fluid dynamics. The new method is constructed using a multi-dimensional kernel-based Gaussian Process (GP) prolongation model. The formulation for this scheme was inspired by the GP methods introduced by A. Reyes et al. (A New Class of High-Order Methods for Fluid Dynamics Simulation using Gaussian Process Modeling, Journal of Scientific Computing, 76 (2017), 443-480; A variable high-order shock-capturing finite difference method with GP-WENO, Journal of Computational Physics, 381 (2019), 189-217). In this paper, we extend the previous GP interpolations and reconstructions to a new GP-based AMR prolongation method that delivers a high-order accurate prolongation of data from coarse to fine grids on AMR grid hierarchies. In compressible flow simulations special care is necessary to handle shocks and discontinuities in a stable manner. To meet this, we utilize the shock handling strategy using the GP-based smoothness indicators developed in the previous GP work by A. Reyes et al. We demonstrate the efficacy of the GP-AMR method in a series of testsuite problems using the AMReX library, in which the GP-AMR method has been implemented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源