论文标题
耦合控制系统:周期性的轨道生成,并应用于四足动力
Coupled Control Systems: Periodic Orbit Generation with Application to Quadrupedal Locomotion
论文作者
论文摘要
机器人系统可以看作是通过反作用力(Lagrange乘数)实施自动构成的低维系统的集合。受这个观点的启发,本文为非线性控制系统提供了一种新的公式,该制定通过虚拟“耦合”输入受到耦合约束,这些输入抽象地扮演着拉格朗日乘数的作用。本文的主要贡献是一个过程 - 镜像机器人系统中的Lagrange乘数的求解 - 在其中,我们隔离了无耦合约束的子系统,这些子系统可证明其从中衍生而来的耦合控制系统的全阶动力学。对于隔离子系统的非线性优化问题的制定,该尺寸的降低是利用的,该子系统为全阶耦合系统产生周期性轨道。我们考虑将这些想法应用于机器人系统中,这些想法可以分解为子系统。具体而言,我们将四足动物视为由两个双足机器人组成的耦合控制系统,其中应用框架开发的框架允许为单个双头的步态(周期性轨道)生成步态(周期性轨道),从而产生全阶四倍的步态。通过在模拟和粗糙地形中的四足动物机器人的步行实验中证明了这一点。
A robotic system can be viewed as a collection of lower-dimensional systems that are coupled via reaction forces (Lagrange multipliers) enforcing holonomic constraints. Inspired by this viewpoint, this paper presents a novel formulation for nonlinear control systems that are subject to coupling constraints via virtual "coupling" inputs that abstractly play the role of Lagrange multipliers. The main contribution of this paper is a process---mirroring solving for Lagrange multipliers in robotic systems---wherein we isolate subsystems free of coupling constraints that provably encode the full-order dynamics of the coupled control system from which it was derived. This dimension reduction is leveraged in the formulation of a nonlinear optimization problem for the isolated subsystem that yields periodic orbits for the full-order coupled system. We consider the application of these ideas to robotic systems, which can be decomposed into subsystems. Specifically, we view a quadruped as a coupled control system consisting of two bipedal robots, wherein applying the framework developed allows for gaits (periodic orbits) to be generated for the individual biped yielding a gait for the full-order quadruped. This is demonstrated through walking experiments of a quadrupedal robot in simulation and on rough terrains.