论文标题
量子场的非高斯纠缠重新归一化
Non-Gaussian Entanglement Renormalization for Quantum Fields
论文作者
论文摘要
在这项工作中,提出了用于相互作用的量子场理论(ICMERA)的非高斯CMERA张量网络。这是由连续的张量网络电路组成的,其中波函数的纠缠重新归一化的发生器无扰动地扩展,以非二次变异项进行扩展。 ICMERA电路非扰动地实现了该理论场上的一组量表依赖性非线性变换,该变换假设高斯CMERA电路引起的比例依赖性线性变换的概括。在这里,我们为自相互作用的标量和费米子场理论提供了这些转换。最后,ICMERA张量网络已针对$(1+1)$ dimensions中的$ λϕ^4 $理论进行了完全优化。这使我们可以非扰动地评估两点相关函数的连接部分。我们的结果表明,ICMERA波函数编码该理论的适当的非高斯相关性,从而提供了一种新的变分工具来研究与强烈相互作用的场理论相关的现象。
In this work, a non-Gaussian cMERA tensor network for interacting quantum field theories (icMERA) is presented. This consists of a continuous tensor network circuit in which the generator of the entanglement renormalization of the wavefunction is nonperturbatively extended with nonquadratic variational terms. The icMERA circuit nonperturbatively implements a set of scale dependent nonlinear transformations on the fields of the theory, which suppose a generalization of the scale dependent linear transformations induced by the Gaussian cMERA circuit. Here we present these transformations for the case of self-interacting scalar and fermionic field theories. Finally, the icMERA tensor network is fully optimized for the $λϕ^4$ theory in $(1+1)$ dimensions. This allows us to evaluate, nonperturbatively, the connected parts of the two- and four-point correlation functions. Our results show that icMERA wavefunctionals encode proper non-Gaussian correlations of the theory, thus providing a new variational tool to study phenomena related with strongly interacting field theories.