论文标题
稳定性和Hölder解决方案对紧凑型遗传歧管上复杂的Monge-ampère方程的规律性
Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact Hermitian manifolds
论文作者
论文摘要
令$(x,ω)$为紧凑的赫尔米利亚流形。我们为复杂的Monge-ampère方程的解决方案建立了稳定结果,右侧为$ l^p $,$ p> 1 $。使用此方法,我们证明解决方案是Hölder连续的,其指数与Kähler案例\ cite {ddgkpz14}中相同。我们的技术还适用于紧凑型Kähler歧管的大型共同学课程的设置。
Let $(X,ω)$ be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampère equations with right-hand side in $L^p$, $p>1$. Using this we prove that the solutions are Hölder continuous with the same exponent as in the Kähler case \cite{DDGKPZ14}. Our techniques also apply to the setting of big cohomology classes on compact Kähler manifolds.