论文标题

成对相似性知识转移,用于弱监督对象本地化

Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

论文作者

Rahimi, Amir, Shaban, Amirreza, Ajanthan, Thalaiyasingam, Hartley, Richard, Boots, Byron

论文摘要

弱监督的对象定位(WSOL)方法仅需要图像级标签,而不是完全监督算法所需的昂贵边界框注释。我们研究了带有弱监督图像标签的目标类别上学习本地化模型的问题,这是由完全注释的源数据集的帮助。通常,首先对WSOL模型进行了培训,以预测现成的全面监督源数据集上的类通用对象分数,然后逐渐适应以学习弱监督的目标数据集中的对象。在这项工作中,我们认为仅学习一个物体函数是一种弱的知识转移形式,并建议学习一个类成对的相似性函数,该功能也直接比较了两个输入建议。合并的本地化模型和估计的对象注释是在交替优化范式中共同学习的,就像标准WSOL方法中通常所做的那样。与学习成对相似性的现有工作相反,我们的方法优化了具有收敛保证的统一目标,并且对于大规模应用程序,它在计算上有效。可可和ILSVRC 2013检测数据集的实验表明,随着成对相似性函数的包含,定位模型的性能大大提高。例如,在ILSVRC数据集中,正确的本地化(CORLOC)绩效从72.8%提高到78.2%,这是知识传输背景下WSOL任务的新最新任务。

Weakly Supervised Object Localization (WSOL) methods only require image level labels as opposed to expensive bounding box annotations required by fully supervised algorithms. We study the problem of learning localization model on target classes with weakly supervised image labels, helped by a fully annotated source dataset. Typically, a WSOL model is first trained to predict class generic objectness scores on an off-the-shelf fully supervised source dataset and then it is progressively adapted to learn the objects in the weakly supervised target dataset. In this work, we argue that learning only an objectness function is a weak form of knowledge transfer and propose to learn a classwise pairwise similarity function that directly compares two input proposals as well. The combined localization model and the estimated object annotations are jointly learned in an alternating optimization paradigm as is typically done in standard WSOL methods. In contrast to the existing work that learns pairwise similarities, our approach optimizes a unified objective with convergence guarantee and it is computationally efficient for large-scale applications. Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function. For instance, in the ILSVRC dataset, the Correct Localization (CorLoc) performance improves from 72.8% to 78.2% which is a new state-of-the-art for WSOL task in the context of knowledge transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源