论文标题
具有双相操作员和对流术语的椭圆系统的存在和独特性
Existence and uniqueness of elliptic systems with double phase operators and convection terms
论文作者
论文摘要
在本文中,我们研究了由所谓的双相算子和非线性右侧驱动的准线性椭圆系统,具体取决于解决方案的梯度。基于假酮算子的溢流性结果,我们证明了至少一种弱解决此类系统的解决方案。此外,在数据的一些其他条件下,显示了弱解决方案的独特性。
In this paper we study quasilinear elliptic systems driven by so-called double phase operators and nonlinear right-hand sides depending on the gradients of the solutions. Based on the surjectivity result for pseudomonotone operators we prove the existence of at least one weak solution of such systems. Furthermore, under some additional conditions on the data, the uniqueness of weak solutions is shown.