论文标题

关于退化的para-cr结构:尚丹还原和均匀模型

On degenerate para-CR structures: Cartan reduction and homogeneous models

论文作者

Merker, Joel, Nurowski, Pawel

论文摘要

本文努力研究了Levi Denerate Cr几何形状的最新作品,努力研究更广泛,更灵活的Para-Cr结构,在复杂的共轭下,不这样的不知道的限制放宽了。我们考虑$ 5 $维度的Para-Cr结构,其Levi形式的等级为$ 1 $,并且在参数和变量方面都是$ 2 $ nondementer的。消除参数,这些结构可以用PDE $ z_y = f(x,y,y,z,z_x)$ $ $ \,\,\&\,\,$ z__ {xxx} = $ f_ {z_xz_x} \ neq 0 $,是完全可集成的$ d_x^3 f =δ_yh $, 在高级cartan的等价方法中,我们确定了所有相关的均匀模型以及它们的对称性: (i)$ z_y = \ tfrac14(z_x)^2 \ quad \&\ quad z__ {xxx} = 0 $; (ii)$ z_y = \ tfrac14(z_x)^2 \ quad \&\ quad z__ {xxx} =(z__ {xx})^3 $; (iiia)$ z_y = \ tfrac14(z_x)^b \,\,\,\&\,\,\,z_ {xxx} =(2-b)\ frac {(z__ {xx})^2}^2} {z_x} {z_x} {z_x} $ for $ z_x> 0 $ for $ z_x> 0 $ for $ z_x> for $ z_x> for $ b \ b \ b \ b \ b \ b \ b \ b \ b \ in [1,2)$; (iiib)$ z_y = f(z_x)\ quad \&\ quad z_ {xxx} = h(z_x)\ big(z__ {xx} \ big)^2 $,其中函数$ f $由隐式公式确定:\ [(z_x^2+f(z_____x) 2b \,\ Mathrm {arctan} \ tfrac {bz_x-f(z_x)}} {z_x+bf(z_x)} \ right)= 1+b^2 \]和wery:\ [h(z_x):= = = = = = = = = = \ frac {(b^2-3)z_x-4bf(z_x)} {(f(z_x)-bz_x)^2},\],对于任何真正的$ b> 0 $。

Motivated by recent works in Levi degenerate CR geometry, this article endeavours to study the wider and more flexible para-CR structures for which the constraint of invariancy under complex conjugation is relaxed. We consider $5$-dimensional para-CR structures whose Levi forms are of constant rank $1$ and that are $2$-nondegenerate both with respect to parameters and to variables. Eliminating parameters, such structures may be represented modulo point transformations by pairs of PDEs $z_y=F(x, y, z, z_x)$ $\,\,\&\,\,$ $z_{xxx}=H(x,y,z,z_x,z_{xx})$, with $F$ independent of $z_{xx}$ and $F_{z_xz_x} \neq 0$, that are completely integrable $D_x^3 F=Δ_y H$, Performing at an advanced level Cartan's method of equivalence, we determine all concerned homogeneous models, together with their symmetries: (i) $z_y=\tfrac14 (z_x)^2\quad \&\quad z_{xxx}=0$; (ii) $z_y=\tfrac14 (z_x)^2\quad \& \quad z_{xxx}=(z_{xx})^3$; (iiia) $z_y=\tfrac14 (z_x)^b\,\, \& \,\,z_{xxx} = (2-b)\frac{(z_{xx})^2}{z_x}$ with $z_x>0$ for any real $b\in[1,2)$; (iiib) $z_y = f(z_x)\quad \& \quad z_{xxx}=h(z_x)\big(z_{xx}\big)^2$, where the function $f$ is determined by the implicit equation: \[ (z_x^2+f(z_x)^2)\, \mathrm{exp} \left( 2b\,\mathrm{arctan}\tfrac{bz_x-f(z_x)}{z_x+bf(z_x)} \right) = 1+b^2 \] and where: \[ h(z_x) := \frac{(b^2-3)z_x-4bf(z_x)}{(f(z_x)-bz_x)^2}, \] for any real $b>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源