论文标题

通过授权的社会导航驱动了深度强化学习

Social Navigation with Human Empowerment driven Deep Reinforcement Learning

论文作者

van der Heiden, Tessa, Mirus, Florian, van Hoof, Herke

论文摘要

移动机器人导航在过去几十年中进行了广泛的研究。与机器人和人类共享工作空间的合作方面将在未来变得越来越重要。因此,下一代移动机器人必须在社会上符合人类的合作者接受。但是,正式的合规定义并不简单。另一方面,人造代理已经使用了赋权来学习复杂和广义的作用,并且也被证明是生物行为的良好模型。在本文中,我们超越了古典\ acf {rl}的方法,并为我们的代理提供了使用赋权的内在动机。与自我授权相反,一种采用我们方法的机器人努力为人们在环境中的授权而努力,因此不会因机器人的存在和运动而打扰他们。在我们的实验中,我们表明我们的方法对人类具有积极影响,因为它可以最大程度地减少其与人类的距离,从而减少了人类的旅行时间,同时有效地朝着自己的目标迈进。交互式用户研究表明,与参与者相比,我们的方法被认为比其他最先进的方法更社交。

Mobile robot navigation has seen extensive research in the last decades. The aspect of collaboration with robots and humans sharing workspaces will become increasingly important in the future. Therefore, the next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators. However, a formal definition of compliance is not straightforward. On the other hand, empowerment has been used by artificial agents to learn complicated and generalized actions and also has been shown to be a good model for biological behaviors. In this paper, we go beyond the approach of classical \acf{RL} and provide our agent with intrinsic motivation using empowerment. In contrast to self-empowerment, a robot employing our approach strives for the empowerment of people in its environment, so they are not disturbed by the robot's presence and motion. In our experiments, we show that our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal. An interactive user-study shows that our method is considered more social than other state-of-the-art approaches by the participants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源