论文标题
深空的空间梯度和面部抗疾病的时间深度学习
Deep Spatial Gradient and Temporal Depth Learning for Face Anti-spoofing
论文作者
论文摘要
面部抗刺激对于面部识别系统的安全至关重要。深度监督学习已被证明是面对抗旋转的最有效方法之一。尽管取得了巨大的成功,但大多数以前的作品仍然通过简单地通过深度来增强损失,同时忽略了详细的细粒度信息以及面部深度和移动模式之间的相互作用,将问题作为单帧多任务处理。相比之下,我们设计了一种基于两个见解的多个框架的演示攻击的新方法:1)在生活与欺骗面之间的详细判别线索(例如,空间梯度幅度)(例如,空间梯度幅度)可以通过堆叠的香草卷积丢弃,以及2)3D移动面的动力学,可在检测Spoodecoodecoodecoodecoodectects的3D移动外观。所提出的方法能够通过剩余的空间梯度块(RSGB)捕获歧视性细节,并有效地从时空传播模块(STPM)编码时空信息。此外,提出了一种新颖的对比深度损失,以进行更准确的深度监督。为了评估我们方法的疗效,我们还收集了一个双模式抗烟数据集(DMAD),该数据集为每个样品提供实际深度。该实验表明,所提出的方法在五个基准数据集上实现了最先进的结果,包括Oulu-NPU,SIW,Casia-MFSD,Replay-Intake和New DMAD。代码将在https://github.com/clks-wzz/fas-sgtd上找到。
Face anti-spoofing is critical to the security of face recognition systems. Depth supervised learning has been proven as one of the most effective methods for face anti-spoofing. Despite the great success, most previous works still formulate the problem as a single-frame multi-task one by simply augmenting the loss with depth, while neglecting the detailed fine-grained information and the interplay between facial depths and moving patterns. In contrast, we design a new approach to detect presentation attacks from multiple frames based on two insights: 1) detailed discriminative clues (e.g., spatial gradient magnitude) between living and spoofing face may be discarded through stacked vanilla convolutions, and 2) the dynamics of 3D moving faces provide important clues in detecting the spoofing faces. The proposed method is able to capture discriminative details via Residual Spatial Gradient Block (RSGB) and encode spatio-temporal information from Spatio-Temporal Propagation Module (STPM) efficiently. Moreover, a novel Contrastive Depth Loss is presented for more accurate depth supervision. To assess the efficacy of our method, we also collect a Double-modal Anti-spoofing Dataset (DMAD) which provides actual depth for each sample. The experiments demonstrate that the proposed approach achieves state-of-the-art results on five benchmark datasets including OULU-NPU, SiW, CASIA-MFSD, Replay-Attack, and the new DMAD. Codes will be available at https://github.com/clks-wzz/FAS-SGTD.