论文标题
随机策略在分配稳健的风险避开网络拦截游戏中的价值
The value of randomized strategies in distributionally robust risk averse network interdiction games
论文作者
论文摘要
在极端损失方案中,风险的条件价值(CVAR)被广泛用来解释规避风险代理的偏好。通过使用限制性和歧义性的抗辩器研究随机化游戏在拦截游戏中的有效性,我们引入了一个具有分布强大的网络拦截游戏,其中限制器在可行的拦截计划中随机随机,以最大程度地减少最差的CVAR,以使最差的CVAR与他的混合策略的无名于他的能力分配,并使之高于ARC的无知能力分配。相反,流播放器最大化网络中的总流量。通过使用预算的不确定性集,我们可以控制模型中的保守主义程度,并将判例中的非线性问题重新制定为双凸优化问题。为了将此问题解决到任何给定的最优水平,我们设计了一种空间分支和结合算法,该算法使用McCormick的不平等现象并降低了重新制定线性化技术(RRLT)来获得问题的凸出放松。我们还开发了一种列生成算法,以确定凸弛豫的最佳支持,然后在坐标下降算法中使用该算法来确定上限。在数值实验中建立了空间分支和结合算法的效率和收敛性。此外,我们的数值实验表明,随机策略可以比最佳确定性策略明显更好地样本和样本外观。
Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-averse agent in the extreme loss scenarios. To study the effectiveness of randomization in interdiction games with an interdictor that is both risk and ambiguity averse, we introduce a distributionally robust network interdiction game where the interdictor randomizes over the feasible interdiction plans in order to minimize the worst-case CVaR of the flow with respect to both the unknown distribution of the capacity of the arcs and his mixed strategy over interdicted arcs. The flow player, on the contrary, maximizes the total flow in the network. By using the budgeted uncertainty set, we control the degree of conservatism in the model and reformulate the interdictor's non-linear problem as a bi-convex optimization problem. For solving this problem to any given optimality level, we devise a spatial branch and bound algorithm that uses the McCormick inequalities and reduced reformulation linearization technique (RRLT) to obtain convex relaxation of the problem. We also develop a column generation algorithm to identify the optimal support of the convex relaxation which is then used in the coordinate descent algorithm to determine the upper bounds. The efficiency and convergence of the spatial branch and bound algorithm is established in the numerical experiments. Further, our numerical experiments show that randomized strategies can have significantly better in-sample and out-of-sample performance than optimal deterministic ones.