论文标题

潜在嵌入反馈和零击分类的判别特征

Latent Embedding Feedback and Discriminative Features for Zero-Shot Classification

论文作者

Narayan, Sanath, Gupta, Akshita, Khan, Fahad Shahbaz, Snoek, Cees G. M., Shao, Ling

论文摘要

零射门学习旨在对培训期间没有数据可用的看不见类别进行分类。在广义变体中,测试样本可以进一步属于看到或看不见的类别。最先进的依赖于生成的对抗网络,这些网络通过利用特定类别的语义嵌入来综合看不见的类特征。在训练过程中,它们产生了语义一致的特征,但在特征合成和分类过程中丢弃了此约束。我们建议在(广义)零射门学习的所有阶段执行语义一致性:培训,特征合成和分类。我们首先从语义嵌入解码器引入反馈循环,该循环在训练和特征合成阶段都迭代地完善了生成的功能。然后将综合特征及其相应的解码器潜在嵌入转换为歧视性特征,并在分类过程中使用以减少类别之间的歧义。 (广义)零射对象和动作分类的实验揭示了语义一致性和迭代反馈的好处,在六个零局学习基准上的现有方法优于现有方法。源代码https://github.com/akshitac8/tfvaegan。

Zero-shot learning strives to classify unseen categories for which no data is available during training. In the generalized variant, the test samples can further belong to seen or unseen categories. The state-of-the-art relies on Generative Adversarial Networks that synthesize unseen class features by leveraging class-specific semantic embeddings. During training, they generate semantically consistent features, but discard this constraint during feature synthesis and classification. We propose to enforce semantic consistency at all stages of (generalized) zero-shot learning: training, feature synthesis and classification. We first introduce a feedback loop, from a semantic embedding decoder, that iteratively refines the generated features during both the training and feature synthesis stages. The synthesized features together with their corresponding latent embeddings from the decoder are then transformed into discriminative features and utilized during classification to reduce ambiguities among categories. Experiments on (generalized) zero-shot object and action classification reveal the benefit of semantic consistency and iterative feedback, outperforming existing methods on six zero-shot learning benchmarks. Source code at https://github.com/akshitac8/tfvaegan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源