论文标题

学会优化能力感知系统中的自主权

Learning to Optimize Autonomy in Competence-Aware Systems

论文作者

Basich, Connor, Svegliato, Justin, Wray, Kyle Hollins, Witwicki, Stefan, Biswas, Joydeep, Zilberstein, Shlomo

论文摘要

对半自主系统(SAS)的兴趣正在迅速发展,作为在需要偶尔依赖人类的域中部署自治系统的范式。该范式允许服务机器人或自动驾驶汽车以不同级别的自主权运行,并在需要人类判断的情况下提供安全性。我们提出了一种自治的内省模型,该模型是通过经验在线学习和更新的,并决定了代理在任何给定情况下可以自主行动的程度。我们定义了一种能力感知系统(CAS),该系统明确地在不同级别的自主权和可用的人类反馈中进行了自身的熟练程度。 CAS学会根据经验来调整其自主权水平,以最大程度地提高整体效率,并考虑人力援助成本。我们分析了CAS的收敛性,并为机器人输送和自动驾驶领域提供了实验结果,这些驾驶领域证明了该方法的好处。

Interest in semi-autonomous systems (SAS) is growing rapidly as a paradigm to deploy autonomous systems in domains that require occasional reliance on humans. This paradigm allows service robots or autonomous vehicles to operate at varying levels of autonomy and offer safety in situations that require human judgment. We propose an introspective model of autonomy that is learned and updated online through experience and dictates the extent to which the agent can act autonomously in any given situation. We define a competence-aware system (CAS) that explicitly models its own proficiency at different levels of autonomy and the available human feedback. A CAS learns to adjust its level of autonomy based on experience to maximize overall efficiency, factoring in the cost of human assistance. We analyze the convergence properties of CAS and provide experimental results for robot delivery and autonomous driving domains that demonstrate the benefits of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源