论文标题

从点集对特定类别的对称3D关键点的无监督学习

Unsupervised Learning of Category-Specific Symmetric 3D Keypoints from Point Sets

论文作者

Fernandez-Labrador, Clara, Chhatkuli, Ajad, Paudel, Danda Pani, Guerrero, Jose J., Demonceaux, Cédric, Van Gool, Luc

论文摘要

从某些类别的对象集合中自动发现特定于类别的3D关键点是一个具有挑战性的问题。原因之一是,并非类别中的所有对象都必须具有相同的语义部分。当对象由3D点云表示时,难度的级别会进一步增加,形状和未知坐标帧的变化。如果它们有意义地表示对象的形状,并且可以简单地在所有对象上建立订单,则我们将关键点定义为特定于类别的类别。本文旨在使用来自未知类别的对象的未对准对象的未对准的3D点云的集合来学习特定于类别的3D关键点。为了做到这一点,我们使用对称线性基形状在类别内定义的形状模型,而不假设已知对称的平面。对称性的用法使我们学习适合更高未对准的稳定关键点。据我们所知,这是直接从3D点云中学习此类关键点的第一项工作。使用来自四个基准数据集的类别,我们通过定量和定性评估来证明我们学习的关键点的质量。我们的实验还表明,我们方法发现的关键点在几何和语义上是一致的。

Automatic discovery of category-specific 3D keypoints from a collection of objects of some category is a challenging problem. One reason is that not all objects in a category necessarily have the same semantic parts. The level of difficulty adds up further when objects are represented by 3D point clouds, with variations in shape and unknown coordinate frames. We define keypoints to be category-specific, if they meaningfully represent objects' shape and their correspondences can be simply established order-wise across all objects. This paper aims at learning category-specific 3D keypoints, in an unsupervised manner, using a collection of misaligned 3D point clouds of objects from an unknown category. In order to do so, we model shapes defined by the keypoints, within a category, using the symmetric linear basis shapes without assuming the plane of symmetry to be known. The usage of symmetry prior leads us to learn stable keypoints suitable for higher misalignments. To the best of our knowledge, this is the first work on learning such keypoints directly from 3D point clouds. Using categories from four benchmark datasets, we demonstrate the quality of our learned keypoints by quantitative and qualitative evaluations. Our experiments also show that the keypoints discovered by our method are geometrically and semantically consistent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源