论文标题

非血小板的非热带理论在符合阶级中

Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class

论文作者

Kawabata, Kohei, Okuma, Nobuyuki, Sato, Masatoshi

论文摘要

非热汉密尔顿人通常对边界条件敏感,其在开放边界条件下的光谱和波函数不一定会被Bloch带理论预测到周期性边界条件。为了阐明这种非Bloch特征,最近的作品开发了一种非Bloch带理论,即使在任意边界条件下也有效。在这里,可以证明标准的非Bloch带理论在符号阶级中崩溃了,在该类别中,非热汉密尔顿人由于相互互惠而表现出Kramels的变性。取而代之的是,以一般的方式开发了符号类别的修改的非Bloch带理论以及说明性的例子。这种非标准的非Bloch频段理论是$ \ Mathbb {z} _ {2} $非甲状化皮肤效应受互惠保护的效果。

Non-Hermitian Hamiltonians are generally sensitive to boundary conditions, and their spectra and wave functions under open boundary conditions are not necessarily predicted by the Bloch band theory for periodic boundary conditions. To elucidate such a non-Bloch feature, recent works have developed a non-Bloch band theory that works even under arbitrary boundary conditions. Here, it is demonstrated that the standard non-Bloch band theory breaks down in the symplectic class, in which non-Hermitian Hamiltonians exhibit Kramers degeneracy because of reciprocity. Instead, a modified non-Bloch band theory for the symplectic class is developed in a general manner, as well as illustrative examples. This nonstandard non-Bloch band theory underlies the $\mathbb{Z}_{2}$ non-Hermitian skin effect protected by reciprocity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源