论文标题

确定著名的新闻报道

Identifying Notable News Stories

论文作者

Saravanou, Antonia, Stefanoni, Giorgio, Meij, Edgar

论文摘要

近年来,新闻内容的数量大大增加,以自动化方式处理和传递此信息的系统越来越普遍。这样的系统中需要的一个关键组成部分是一种自动确定某个新闻故事的值得注意的方法,以便在交付过程中优先考虑这些故事。这样做的一种方法是将新闻故事中的每个故事与一个著名的事件进行比较。换句话说,检测著名新闻的问题可以定义为排名任务。鉴于值得信赖的事件和一系列候选新闻故事的来源,我们的目标是回答以下问题:“哪个候选新闻故事与著名的新闻故事最相似?”。我们采用不同的功能组合和学习排名(LTR)模型,并使用众包收集相关标签。在我们的方法中,我们使用候选新闻报道(三元)的结构化表示,并将其链接到相应的实体。我们的评估表明,我们提出的方法中的功能优于标准排名方法,而训练有素的模型可以很好地推广到看不见的新闻报道。

The volume of news content has increased significantly in recent years and systems to process and deliver this information in an automated fashion at scale are becoming increasingly prevalent. One critical component that is required in such systems is a method to automatically determine how notable a certain news story is, in order to prioritize these stories during delivery. One way to do so is to compare each story in a stream of news stories to a notable event. In other words, the problem of detecting notable news can be defined as a ranking task; given a trusted source of notable events and a stream of candidate news stories, we aim to answer the question: "Which of the candidate news stories is most similar to the notable one?". We employ different combinations of features and learning to rank (LTR) models and gather relevance labels using crowdsourcing. In our approach, we use structured representations of candidate news stories (triples) and we link them to corresponding entities. Our evaluation shows that the features in our proposed method outperform standard ranking methods, and that the trained model generalizes well to unseen news stories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源