论文标题
探索与Alma(Emoca)的分子复杂性:SGR B2(N)中的复杂异氰化物
Exploring molecular complexity with ALMA (EMoCA): Complex isocyanides in Sgr B2(N)
论文作者
论文摘要
我们使用emoca调查数据来搜索SGR B2(N2)及其相应的氰化物类似物中的异氰化物。然后,我们使用了耦合的三相化学动力学代码魔法来模拟它们的化学反应。该网络已添加了几种新物种,并添加了100多种新反应。此外,已经实施了新的单级同时崩溃/热身模型,从而消除了对先前两阶段模型的需求。该变量,视觉消光依赖性$ζ$也被合并到模型中并进行了测试。我们报告了SGR B2(N2)中CH $ _3 $ NC和HCCNC的暂定检测,该检测代表了SGR B2热核中两种物种的首次检测。我们更新的化学模型可以根据所选的物理参数相当出色地重现大多数观察到的NC:CN比率。表现最佳的模型具有灭绝依赖的宇宙射线电离速率,该速率从〜2 $ \ times $ 10 $ 10 $^{ - 15} $ s $ s $^{ - 1} $在云边缘到〜1 $ \ times $ 10 $ 10 $^{ - 16} $ S $ s $ s $^{ - 1} $。与此模型相比,依赖于消失的$ζ$的型号通常也不同意,$ζ$的模型也不大于1.3 $ \ times $ 10 $^{ - 17} $ s $ s $^{ - 1} $的规范值。使用最佳拟合化学模型的结果运行辐射转移模型。辐射转移模型产生的色谱柱密度明显低于观察上确定的柱密度。在观察确定的密度和温度曲线中的不准确性是可能的解释。激发温度对真实的``热核''分子进行了很好的再现,但是对于其他分子(例如HC $ _3 $ n)而言,它的变化更大,对于ALMA频段3中存在较少的线。
We used the EMoCA survey data to search for isocyanides in Sgr B2(N2) and their corresponding cyanide analogs. We then used the coupled three-phase chemical kinetics code MAGICKAL to simulate their chemistry. Several new species, and over 100 new reactions have been added to the network. In addition, a new single-stage simultaneous collapse/warm-up model has been implemented, thus eliminating the need for the previous two-stage models. A variable, visual extinction-dependent $ζ$ was also incorporated into the model and tested. We report the tentative detection of CH$_3$NC and HCCNC in Sgr B2(N2), which represents the first detection of both species in a hot core of Sgr B2. Our updated chemical models can reproduce most observed NC:CN ratios reasonably well depending on the physical parameters chosen. The model that performs best has an extinction-dependent cosmic-ray ionization rate that varies from ~2 $\times$ 10$^{-15}$ s$^{-1}$ at the edge of the cloud to ~1 $\times$ 10$^{-16}$ s$^{-1}$ in the center. Models with higher extinction-dependent $ζ$ than this model generally do not agree as well, nor do models with a constant $ζ$ greater than the canonical value of 1.3 $\times$ 10$^{-17}$ s$^{-1}$ throughout the source. Radiative transfer models are run using results of the best-fit chemical model. Column densities produced by the radiative transfer models are significantly lower than those determined observationally. Inaccuracy in the observationally determined density and temperature profiles is a possible explanation. Excitation temperatures are well reproduced for the true ``hot core'' molecules, but are more variable for other molecules such as HC$_3$N, for which fewer lines exist in ALMA Band 3.