论文标题
评估一些涉及广义超测量函数的非元素积分
Evaluation of some non-elementary integrals involving the generalized hypergeometric function with some applications
论文作者
论文摘要
无限的积分$$ \ int x^αe^{ηx^β} \,_ pf_q(a_1,a_2,a_2,\ cdot \ cdot \ cdot \ cdot \ cdot \ cdot a_p; b_1,b_2,b_2,\ cdot \ cdot \ cdot \ cdot \ cdot \ cdot \ cdot \ cdot,b_q; b_q; b_q;λx^upx^um $ γ\ ne0 $是真实的或复杂的常数,$ _PF_Q $是广义的超几何函数,根据涉及广义超几何函数的无限序列评估。指数函数$ e^{ηx^β} $的相关积分要么被双曲函数$ \ cosh \ left(ηx^β\ right)$或$ \ sinh \ left(ηx^ββ\ right)$,或sinosoidal函数$ \ cos \ cos \ weft( $ \ sin \ left(ηx^β\ right)$也通过无限序列进行评估,涉及广义超几何函数$ _PF_Q $。对应用分析进行了一些应用示例,其中评估了一些新的傅立叶和拉普拉斯积分(或变换)。在短波限制中,ORR-Sommerfeld方程(具有线性流动背景)的分析解决方案用某些无限序列表示涉及超几何序列$ _2F_3 $。利用双曲线和欧拉的身份,还得出了一些有趣的串联身份,涉及指数,双曲线,三角函数和广义超几何函数。
The indefinite integral $$ \int x^αe^{ηx^β}\,_pF_q (a_1, a_2, \cdot\cdot\cdot a_p; b_1, b_2, \cdot\cdot\cdot, b_q; λx^γ)dx, $$ where $α, η, β, λ, γ\ne0$ are real or complex constants and $_pF_q$ is the generalized hypergeometric function, is evaluated in terms of an infinite series involving the generalized hypergeometric function. Related integrals in which the exponential function $e^{ηx^β}$ is either replaced by the hyperbolic function $\cosh\left(ηx^β\right)$ or $\sinh\left(ηx^β\right)$, or the sinusoidal function $\cos\left(ηx^β\right)$ or $\sin\left(ηx^β\right)$, are also evaluated in terms of infinite series involving the generalized hypergeometric function $_pF_q$. Some application examples from applied analysis, in which some new Fourier and Laplace integrals (or transforms) are evaluated, are given. The analytical solution of the Orr-Sommerfeld equation (with a linear mean flow background) in the short-wave limit is expressed in terms of some infinite series involving the hypergeometric series $_2F_3$. Making use of the hyperbolic and Euler identities, some interesting series identities involving exponential, hyperbolic, trigonometric functions and the generalized hypergeometric function are also derived.