论文标题
拉普拉斯法,用于标量颗粒弹性散射的最简单图
Laplace method for the simplest diagrams of elastic scattering of scalar particles
论文作者
论文摘要
我们提出了一种算法,用于应用拉普拉斯方法在计算最简单的feynman图中使用标量ϕ^3理论中的单个循环计算。这样的图表对散射幅度的贡献的计算需要计算在循环中循环的四摩米塔组件上的四倍积分。 Laplace方法计算多个积分的本质在于一个事实,即集成剂的模块在集成域内具有足够锐利的最大值点,那么积分可以通过高斯积分来代替,通过以高于apogarithm的指数形式代表集成,并将该logarithm的指数扩展到taylor inter necor necor necy nevient of the viceent of vicient of vicient of vicient of vicice seption seption seption of tem of tem of te vic of viciention seption seption nevient。我们表明,在四维集成区域内有二维和非相互作用的表面,并在其上达到了整个模块的最大模块。这导致了一个问题,即集成在非分析上取决于负责绕过极点的参数。散射幅度对数的衍生物也非分析取决于这些参数。但是,在本文中,我们表明这些非分析率相互补偿。由于这样的过程,可以通过分析完成四个集成中的三个,并且该图对散射幅度的贡献的计算降低为单个积分的数值计算,该表达式中不包含非分析率的表达式中的单个积分范围。所述的计算方法用于构建弹性散射差异截面Dσ_弹性/dt的模型依赖性,该模型在传输的四摩梅t t的平方(mandelstam变量)的平方上。
We propose an algorithm for the application of the Laplace method for the calculation of the simplest Feynman diagram with a single loop in the scalar ϕ^3 theory. The calculation of the contribution of such a diagram to the scattering amplitude requires the calculation of a fourfold integral over the four-momenta components circulating in a loop. The essence of the Laplace method for the calculation of multiple integrals lies in the fact that if the module of an integrand has a point of sufficiently sharp maximum inside the integration domain, then the integral can be replaced by a Gaussian integral by representing the integrand in the form of an exponent from the logarithm and expanding this logarithm into Taylor series in the vicinity of a maximum point up to the second degree terms. We show that there are two-dimensional and non-intersecting surfaces inside the four-dimensional region of integration, on which the maximum of the module of integrand is reached. This leads to a problem that the integrand is non-analytically dependent on the parameters responsible for bypassing the poles. Also the derivatives of logarithm of the scattering amplitude are non-analytically dependent on these parameters. However, in the paper we show that these non-analyticities compensate each other. As a result of such a procedure, three of the four integrations can be done analytically, and the calculation of the contribution of the diagram to the scattering amplitude is reduced to a numerical calculation of the single integral in finite bounds from an expression that does not contain non-analyticities. The described calculation method is used to construct a model dependence of elastic scattering differential cross section dσ_elastic/dt on the square of the transmitted four-momentum t (Mandelstam variable).