论文标题

上下文转换器:解决对象混乱以进行几次检测

Context-Transformer: Tackling Object Confusion for Few-Shot Detection

论文作者

Yang, Ze, Wang, Yali, Chen, Xianyu, Liu, Jianzhuang, Qiao, Yu

论文摘要

几乎没有射击的对象检测是一个具有挑战性但现实的场景,其中只有几个带注释的培训图像可用于训练探测器。解决此问题的一种流行方法是转移学习,即,在源域基准测试基准上仔细调节检测器。但是,由于训练样本的数据多样性,这种转移的检测器通常无法识别目标域中的新对象。为了解决这个问题,我们在简洁的深层转移框架内提出了一个新颖的上下文转换器。具体而言,上下文转换器可以有效利用源域对象知识作为指导,并自动从目标域中的少数培训图像中自动利用上下文。随后,它可以自适应地整合这些关系线索以增强检测器的判别能力,以减少几种场景中的对象混乱。此外,上下文转换器可灵活地嵌入流行的SSD式检测器中,这使其成为端到端几次学习的插件播放模块。最后,我们评估上下文转换器在挑战性检测和增量少量检测的挑战性设置上。实验结果表明,我们的框架的表现优于最近的最新方法。

Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are available for training detectors. A popular approach to handle this problem is transfer learning, i.e., fine-tuning a detector pretrained on a source-domain benchmark. However, such transferred detector often fails to recognize new objects in the target domain, due to low data diversity of training samples. To tackle this problem, we propose a novel Context-Transformer within a concise deep transfer framework. Specifically, Context-Transformer can effectively leverage source-domain object knowledge as guidance, and automatically exploit contexts from only a few training images in the target domain. Subsequently, it can adaptively integrate these relational clues to enhance the discriminative power of detector, in order to reduce object confusion in few-shot scenarios. Moreover, Context-Transformer is flexibly embedded in the popular SSD-style detectors, which makes it a plug-and-play module for end-to-end few-shot learning. Finally, we evaluate Context-Transformer on the challenging settings of few-shot detection and incremental few-shot detection. The experimental results show that, our framework outperforms the recent state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源