论文标题

同步混沌尖峰序列同步的量子纠缠

Quantum entanglement in the Synchronization of Homoclinic Chaotic Spike Sequences

论文作者

Arecchi, Fortunato Tito

论文摘要

物理学处理由位置Q和动量p描述的牛顿颗粒。同时测量Q和P的精度受到普朗克常数统治的不确定性关系的限制。从不确定性关系中出现了所有量子后果,包括纠缠。另一方面,由相同的脉​​冲序列组成的同层混乱(HC),随着时间的流逝,脉冲不均匀,需要一个非牛顿描述。有限HC峰序列(SFSS)的同步显示量子特征,该量子特征由与HBAR的常数不同,产生纠缠。作为一个相关的例子,我们描述了脑神经元如何产生HC电压脉冲。 SFSS是用编码为HC脉冲的两个不同单词比较其内容的方式,并通过利用量子纠缠来提取有意义的序列,该量子纠缠在人类语言过程范围内持续持续的脱附时间。

Physics deals with Newtonian particles described by position q and momentum p. The precision of the simultaneous measurement of q and p is limited by the uncertainty relation ruled by Planck's constant. From the uncertainty relation all quantum consequences emerge, including entanglement. On the other hand, Homoclinic Chaos (HC) , that consists of sequences of identical pulses, unevenly spaced in time, entails a non-Newtonian description. Synchronization of finite HC spike sequences (SFSS) display quantum features ruled by a constant different from hbar, yielding entanglement. As a relevant example, we describe how brain neurons generate HC voltage pulses. SFSS is the way two different words coded as HC pulses compare their content and extract a meaningful sequence by exploiting quantum entanglement that lasts over a de-coherence time in the range of human linguistic processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源