论文标题

SocialGrid:一种用于在线讨论预测的TCN增强方法

SocialGrid: A TCN-enhanced Method for Online Discussion Forecasting

论文作者

Ling, Chen, Wang, Ruiqi, Tong, Guangmo

论文摘要

作为现代沟通工具的一种手段,在线讨论论坛已成为一个越来越受欢迎的平台,允许异步在线互动​​。人们通过发布线程和答复来分享思想和意见,这在主线程和相关答复之间形成了独特的通信结构。理解这种通信结构下的信息传播模式是很重要的,在这种通信结构中,必不可少的任务是预测未来事件的到达时间。在这项工作中,我们提出了一个新颖而简单的框架,称为社交网络,用于在线讨论形式中建模事件。我们的框架首先将整个事件空间转变为网格表示,通过将连续的EV换成一个特定长度的时间间隔。根据网格的性质,我们利用时间卷积网络在网格级别学习动态。改变单个网格的时间范围,可以使用学习的网格模型来预测不同粒度下未来事件的到达时间。利用Reddit数据,我们通过对一系列应用程序进行实验来验证提出的方法。广泛的实验和现实应用程序。结果表明,与其他方法相比,我们的框架在各种级联预测任务上都表现出色。

As a means of modern communication tools, online discussion forums have become an increasingly popular platform that allows asynchronous online interactions. People share thoughts and opinions through posting threads and replies, which form a unique communication structure between main threads and associated replies. It is significant to understand the information diffusion pattern under such a communication structure, where an essential task is to predict the arrival time of future events. In this work, we proposed a novel yet simple framework, called SocialGrid, for modeling events in online discussing forms. Our framework first transforms the entire event space into a grid representation by grouping successive evens in one time interval of a particular length. Based on the nature of the grid, we leverage the Temporal Convolution Network to learn the dynamics at the grid level. Varying the temporal scope of an individual grid, the learned grid model can be used to predict the arrival time of future events at different granularities. Leveraging the Reddit data, we validate the proposed method through experiments on a series of applications. Extensive experiments and a real-world application. Results have shown that our framework excels at various cascade prediction tasks comparing with other approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源