论文标题
确切的结果是在矩形水槽的分段线性电势中扩散的结果
Exact results on diffusion in a piecewise linear potential with a rectangular sink
论文作者
论文摘要
我们提出了一种新方法,用于在拉普拉斯域中找到精确的分析解决方案,以解决在有任意宽度和高度的矩形水槽的情况下,在零件线性电势中随机助行器的概率密度。随机步行者的运动是通过使用Smoluchowski方程来建模的。对于我们的模型,我们为速率常数得出了精确的分析表达。这是第一个模型,即在任意宽度的下沉范围以获得位置依赖性电位的情况下,可以以封闭形式的确切分析解决方案。该模型比文献中所有其他现有模型更好地理解了反应扩散系统。
We propose a new method for finding the exact analytical solution in Laplace domain for the problem where the probability density of a random walker in a piece-wise linear potential in presence of a rectangular sink of arbitrary width and height. The motion of the random walker is modelled by using Smoluchowski equation. For our model we have derived exact analytical expression for rate constants. This is the first model where the exact analytical solution in closed form is possible in the case of a sink of arbitrary width for position dependent potential. This model is better for understanding reaction-diffusion systems than all other existing models available in literature.