论文标题
新的真实多部分纠缠
New Genuine Multipartite Entanglement
论文作者
论文摘要
量子纠缠是非常重要的资源之一,已广泛用于量子信息处理中。在这项工作中,我们提出了一种新型的真正多部分纠缠。与量子多源网络相比,它源自纠缠系统的特殊几何特征。我们证明,任何对称纠缠的纯状态都比在可息模型中的真正多部分的非局部性表现出更强的非局部性。对于其他不超过$ 3 $的本地尺寸的纠缠纯净状态的类似结果。我们进一步为目睹嘈杂状态的新非局部性提供了计算条件。这些结果表明,当前模型表征了一种新型的通用量子纠缠。
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled systems compared with quantum multisource networks. We prove that any symmetric entangled pure state shows stronger nonlocality than the genuinely multipartite nonlocality in the biseparable model. Similar results hold for other entangled pure states with local dimensions no larger than $3$. We further provide computational conditions for witnessing the new nonlocality of noisy states. These results suggest that the present model is useful characterizing a new kind of generic quantum entanglement.