论文标题
理性表面上的曲线的三角洲不变II:庞加莱系列和拓扑方面
The delta invariant of curves on rational surfaces II: Poincaré series and topological aspects
论文作者
论文摘要
在本文中,我们研究了通过拓扑技术减少曲线细菌的抽象和嵌入式不变性。抽象曲线中最重要的数值分析不变之一是其三角洲不变性。我们的主要目标是开发以嵌入式数据嵌入合理章节嵌入的曲线的三角洲不变公式。拓扑机制不仅产生了公式,而且还与(分析和拓扑)多变量庞加莱系列建立了深厚的联系。
In this article we study abstract and embedded invariants of reduced curve germs via topological techniques. One of the most important numerical analytic invariants of an abstract curve is its delta invariant. Our primary goal is to develop delta invariant formulae for curves embedded in rational singularities in terms of embedded data. The topological machinery not only produces formulae, but it also creates deep connections with the theory of (analytical and topological) multivariable Poincaré series.