论文标题
单轴抗流诱导的各向异性dzyaloshinskii-moriya相互作用的稳定和不稳定的理论研究
Theoretical study on stabilization and destabilization of magnetic skyrmions by uniaxial-strain-induced anisotropic Dzyaloshinskii--Moriya interactions
论文作者
论文摘要
手性武力的铁磁体中的磁性天空目前引起了巨大的研究兴趣,因为它们在自旋装置中的潜在应用。但是,它们仅在狭窄的温度和磁场窗口中出现在散装标本中。这种有限的稳定性制度被认为是技术应用的障碍。最近的实验表明,磁性天际的热力学稳定性通过单轴菌株在散装手性雄性铁磁体中的轴向施用而增强或抑制。 Nii等,Nat。社区。 6,8539(2015),A。Chacon等人,物理学。莱特牧师。 115,267202(2015)]和cu2oseo3 [S. Seki等人,物理。 Rev. B 96,220404(R)(2017)]。在这些实验发现的推动下,我们从理论上研究了各向异性dzyaloshinskii-moriya相互作用对这种单轴菌株引起的磁性天际稳定性的影响。我们发现,当外部磁场垂直于(平行)与各向异性轴垂直(平行)时,磁性天空在存在各向异性DM相互作用的情况下被显着稳定(不稳定),并沿着DM偶联加强了DM耦合。我们的结果完全解释了实验观察到的应变诱导的稳定和磁性天空的不稳定,并为基于天际的电子设备的可能应变工程提供了坚实的基础。
Magnetic skyrmions in chiral-lattice ferromagnets are currently attracting enormous research interest because of their potential applications in spintronic devices. However, they emerge in bulk specimens only in a narrow window of temperature and magnetic field. This limited stability regime is recognized as an obstacle to technical applications. Recent experiments demonstrated that the thermodynamic stability of magnetic skyrmions is enhanced or suppressed by the application of a uniaxial strain depending on its axial direction in bulk chiral-lattice ferromagnets MnSi [Y. Nii et al., Nat. Commun. 6, 8539 (2015), A. Chacon et al., Phys. Rev. Lett. 115, 267202 (2015)] and Cu2OSeO3 [S. Seki et al., Phys. Rev. B 96, 220404(R) (2017)]. Motivated by these experimental discoveries, we theoretically investigated the effects of anisotropic Dzyaloshinskii--Moriya interactions on the stability of magnetic skyrmions caused by this uniaxial strain. We find that magnetic skyrmions are significantly stabilized (destabilized) in the presence of anisotropic DM interactions when an external magnetic field lies perpendicular (parallel) to the anisotropy axis, along which the DM coupling is strengthened. Our results account completely for the experimentally observed strain-induced stabilization and destabilization of magnetic skyrmions and provide a firm ground for possible strain engineering of skyrmion-based electronic devices.