论文标题
在上下文动态定价中的需求预测的不确定性量化
Uncertainty Quantification for Demand Prediction in Contextual Dynamic Pricing
论文作者
论文摘要
数据驱动的顺序决策在现代运营管理中发现了广泛的应用,例如动态定价,库存控制和分类优化。关于数据驱动的顺序决策的大多数现有研究都集中在设计在线政策以最大程度地提高收入。但是,对从业者的关键问题(例如需求函数)对基础真实模型函数(例如需求函数)的不确定性量化的研究尚未得到很好的探索。在本文中,使用动态定价中需求功能的预测作为激励示例,我们研究了为需求函数构建准确置信区间的问题。主要的挑战是,依次收集的数据会导致最大似然估计器或经验风险最小化估计值的分布偏差,从而使经典统计方法(例如Wald's Test)不再有效。我们通过开发一种辩护方法来应对这一挑战,并提供依据的估计器的渐近正态性保证。基于这是依据的估计器,我们提供了需求函数的点和统一置信区间。
Data-driven sequential decision has found a wide range of applications in modern operations management, such as dynamic pricing, inventory control, and assortment optimization. Most existing research on data-driven sequential decision focuses on designing an online policy to maximize the revenue. However, the research on uncertainty quantification on the underlying true model function (e.g., demand function), a critical problem for practitioners, has not been well explored. In this paper, using the problem of demand function prediction in dynamic pricing as the motivating example, we study the problem of constructing accurate confidence intervals for the demand function. The main challenge is that sequentially collected data leads to significant distributional bias in the maximum likelihood estimator or the empirical risk minimization estimate, making classical statistics approaches such as the Wald's test no longer valid. We address this challenge by developing a debiased approach and provide the asymptotic normality guarantee of the debiased estimator. Based this the debiased estimator, we provide both point-wise and uniform confidence intervals of the demand function.