论文标题

连接的车辆网络中时空建模的生成学习方法

A Generative Learning Approach for Spatio-temporal Modeling in Connected Vehicular Network

论文作者

Xia, Rong, Xiao, Yong, Li, Yingyu, Krunz, Marwan, Niyato, Dusit

论文摘要

无线访问延迟的时空建模对于连接的车载系统至关重要。模制结果的质量在很大程度上取决于样品的数量和质量,这些样品的数量和质量由于传感器部署密度以及交通量和密度而有很大差异。本文提出了LAMI(延迟模型介绍),这是一个新颖的框架,旨在生成跨广阔地理区域的连接车辆无线访问潜伏期的全面时空。 Lami从图像介入和合成中采用了这个想法,可以通过两步过程重建缺失的延迟样本。特别是,它首先发现使用基于补丁的方法在各个区域收集的样品之间的空间相关性,然后将原始样品和高度相关的样品馈入变分的自动编码器(VAE)(VAE)(VAE),即深入生成模型,以创建具有与原始样品相似概率分布的潜伏样品。最后,Lami建立了延迟性能的经验PDF,并将PDF映射到不同车辆服务要求的信心水平。已经使用大学校园的商业LTE网络中收集的真实痕迹进行了广泛的绩效评估。仿真结果表明,我们提出的模型可以显着提高潜伏期建模的准确性,尤其是与现有流行解决方案(例如插值和最近的基于邻居的方法)相比。

Spatio-temporal modeling of wireless access latency is of great importance for connected-vehicular systems. The quality of the molded results rely heavily on the number and quality of samples which can vary significantly due to the sensor deployment density as well as traffic volume and density. This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive spatio-temporal of wireless access latency of a connected vehicles across a wide geographical area. LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure. In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Variational Autoencoder (VAE), a deep generative model, to create latency samples with similar probability distribution with the original samples. Finally, LaMI establishes the empirical PDF of latency performance and maps the PDFs into the confidence levels of different vehicular service requirements. Extensive performance evaluation has been conducted using the real traces collected in a commercial LTE network in a university campus. Simulation results show that our proposed model can significantly improve the accuracy of latency modeling especially compared to existing popular solutions such as interpolation and nearest neighbor-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源