论文标题

多控制问题的近似算法

Approximation algorithm for the Multicovering Problem

论文作者

Gorgi, Abbass, Ouali, Mourad El, Srivastav, Anand, Hachimi, Mohamed

论文摘要

令$ \ MATHCAL {H} =(V,\ Mathcal {E})$为具有最大边缘尺寸$ \ ell $和最大度$δ$的超图。 For given numbers $b_v\in \mathbb{N}_{\geq 2}$, $v\in V$, a set multicover in $\mathcal{H}$ is a set of edges $C \subseteq \mathcal{E}$ such that every vertex $v$ in $V$ belongs to at least $b_v$ edges in $C$.设置多倍是找到最小信用额度多倍的问题。 Peleg,Schechtman和Wool猜想,对于任何固定的$δ$和$ b:= \ min_ {v \ in V} b_ {V} $,\ sbmultCov的问题在比率少于$δ:=δ-b+1 $的比率下不可能。因此,要探索该猜想不存在的超图类别是一个挑战。 我们为设定的多次问题提供了多项式时间算法,该算法将确定性阈值算法与条件随机舍入步骤结合在一起。我们的算法产生的近似值为$ \ max \ weft \ {\ frac {148} {149} {Δ,\ left(1- \ frac {(b-1)我们的结果不仅比Srivastav等人提出的近似值(Algorithmica 2016)提高了,而且由于我们对参数$ \ ell $的限制没有限制,因此更为笼统。此外,我们提出了另一种多项式时间算法,其近似值为$ \ frac {5} {6} {6}Δ$,用于$ \ ell \ ell \ leq(1+ε)\ bar {\ ell} $的超图,对于任何固定的$ε\ in [0,\ frac {$ frac} $ {$ ell {$ im} $ {2}边缘大小。对该算法的分析依赖于与Ray-Chaudhuri(1960)引起的匹配/覆盖二元性,我们将其转化为近似形式。第二个表现反驳了Peleg等人的猜想,以示超图的大型亚类。

Let $\mathcal{H}=(V,\mathcal{E})$ be a hypergraph with maximum edge size $\ell$ and maximum degree $Δ$. For given numbers $b_v\in \mathbb{N}_{\geq 2}$, $v\in V$, a set multicover in $\mathcal{H}$ is a set of edges $C \subseteq \mathcal{E}$ such that every vertex $v$ in $V$ belongs to at least $b_v$ edges in $C$. Set Multicover is the problem of finding a minimum-cardinality set multicover. Peleg, Schechtman and Wool conjectured that for any fixed $Δ$ and $b:=\min_{v\in V}b_{v}$, the problem of \sbmultcov is not approximable within a ratio less than $δ:=Δ-b+1$, unless $\mathcal{P} =\mathcal{NP}$. Hence it's a challenge to explore for which classes of hypergraph the conjecture doesn't hold. We present a polynomial time algorithm for the Set Multicover problem which combines a deterministic threshold algorithm with conditioned randomized rounding steps. Our algorithm yields an approximation ratio of $ \max\left\{ \frac{148}{149}δ, \left(1- \frac{ (b-1)e^{\fracδ{4}}}{94\ell} \right)δ\right\}$. Our result not only improves over the approximation ratio presented by Srivastav et al (Algorithmica 2016) but it's more general since we set no restriction on the parameter $\ell$. Moreover we present a further polynomial time algorithm with an approximation ratio of $\frac{5}{6}δ$ for hypergraphs with $\ell\leq (1+ε)\bar{\ell}$ for any fixed $ε\in [0,\frac{1}{2}]$, where $\bar{\ell}$ is the average edge size. The analysis of this algorithm relies on matching/covering duality due to Ray-Chaudhuri (1960), which we convert into an approximative form. The second performance disprove the conjecture of peleg et al for a large subclass of hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源