论文标题

RCNET:将结构信息纳入有限的训练中的MIMO-OFDM符号检测到深度RNN

RCNet: Incorporating Structural Information into Deep RNN for MIMO-OFDM Symbol Detection with Limited Training

论文作者

Zhou, Zhou, Liu, Lingjia, Jere, Shashank, Jianzhong, Zhang, Yi, Yang

论文摘要

在本文中,我们研究了基于学习的MIMO-OFDM符号检测策略,重点是特殊的复发神经网络(RNN) - 水库计算(RC)。我们首先介绍时间频率RC,以利用OFDM信号固有的结构信息。使用时域RC和时频RC作为构建块,我们将浅RC的两个扩展名提供给RCNET:1)堆叠多个时域RC; 2)将多个时频RC叠加到一个深层结构中。 RNN动力学,MIMO-OFDM信号的时频结构和深网的组合使RCNET能够处理MIMO-OFDM信号的干扰和非线性失真,以优于现有方法。与大多数基于NN的检测策略不同,RCNET也被证明可以提供良好的概括性能,即使训练集有限(即,类似的参考信号/培训与基于标准模型的方法相似)。数值实验表明,引入的RCNET可以通过补偿MIMO-OFDM信号的非线性变形,例如,由于发射机中的功率放大器压缩或由于接收器中有限的量化分辨率,因此可以提供比浅RC结构的比特错误率相比,比特错误率增加20%的收敛性。

In this paper, we investigate learning-based MIMO-OFDM symbol detection strategies focusing on a special recurrent neural network (RNN) -- reservoir computing (RC). We first introduce the Time-Frequency RC to take advantage of the structural information inherent in OFDM signals. Using the time domain RC and the time-frequency RC as the building blocks, we provide two extensions of the shallow RC to RCNet: 1) Stacking multiple time domain RCs; 2) Stacking multiple time-frequency RCs into a deep structure. The combination of RNN dynamics, the time-frequency structure of MIMO-OFDM signals, and the deep network enables RCNet to handle the interference and nonlinear distortion of MIMO-OFDM signals to outperform existing methods. Unlike most existing NN-based detection strategies, RCNet is also shown to provide a good generalization performance even with a limited training set (i.e, similar amount of reference signals/training as standard model-based approaches). Numerical experiments demonstrate that the introduced RCNet can offer a faster learning convergence and as much as 20% gain in bit error rate over a shallow RC structure by compensating for the nonlinear distortion of the MIMO-OFDM signal, such as due to power amplifier compression in the transmitter or due to finite quantization resolution in the receiver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源