论文标题
系统耦合曲线进化的数值分析,该曲线的演化是正交到固定边界的,曲线上的反应扩散方程
Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction-diffusion equation on the curve
论文作者
论文摘要
我们考虑了一个半差异有限元的近似值,用于由平面曲线演变而成的系统,通过迫使曲线缩短流动在给定有界的域内$ω\ subset \ subset \ mathbb {r}^2 $中,使得曲线符合边界$ \ poartial的ω$ orthogonife and Orthogonife and Orthodife and offiff IS的反应,并符合该方案的反应。 曲线。我们证明了最佳的误差界限,用于产生的近似值和呈现数值实验。
We consider a semi-discrete finite element approximation for a system consisting of the evolution of a planar curve evolving by forced curve shortening flow inside a given bounded domain $Ω\subset \mathbb{R}^2$, such that the curve meets the boundary $\partial Ω$ orthogonally, and the forcing is a function of the solution of a reaction-diffusion equation that holds on the evolving curve. We prove optimal error bounds for the resulting approximation and present numerical experiments.