论文标题

3D-Carigan:从面部照片中的3D漫画一代的端到端解决方案

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Face Photos

论文作者

Ye, Zipeng, Xia, Mengfei, Sun, Yanan, Yi, Ran, Yu, Minjing, Zhang, Juyong, Lai, Yu-Kun, Liu, Yong-jin

论文摘要

漫画是一种人类面孔的一种艺术风格,在娱乐业中引起了极大的关注。到目前为止,已经存在一些3D漫画生成方法,所有这些方法都需要一些漫画信息(例如漫画草图或2D漫画)作为输入。但是,这种输入很难由非专业用户提供。在本文中,我们提出了一个端到端的深神经网络模型,该模型直接从正常的2D脸照片中生成高质量的3D漫画。对于我们系统来说,最具挑战性的问题是,面部照片的源域(以正常2D面的特征)与3D漫画的目标域(以3D夸张的面部形状和纹理为特征)显着不同。为了应对这一挑战,我们:(1)建立一个5,343 3D漫画网格的大数据集,并使用它在3D漫画形状空间中建立PCA模型; (2)从输入面照片中重建正常的完整3D头,并在3D漫画形状空间中使用其PCA表示,以在输入照片和3D漫画形状之间建立对应关系; (3)根据先前关于讽刺漫画的心理学研究,提出了一种新颖的性格丧失和新颖的讽刺损失。包括新型两级用户研究在内的实验表明,我们的系统可以直接从普通面部照片中产生高质量的3D漫画。

Caricature is a type of artistic style of human faces that attracts considerable attention in the entertainment industry. So far a few 3D caricature generation methods exist and all of them require some caricature information (e.g., a caricature sketch or 2D caricature) as input. This kind of input, however, is difficult to provide by non-professional users. In this paper, we propose an end-to-end deep neural network model that generates high-quality 3D caricatures directly from a normal 2D face photo. The most challenging issue for our system is that the source domain of face photos (characterized by normal 2D faces) is significantly different from the target domain of 3D caricatures (characterized by 3D exaggerated face shapes and textures). To address this challenge, we: (1) build a large dataset of 5,343 3D caricature meshes and use it to establish a PCA model in the 3D caricature shape space; (2) reconstruct a normal full 3D head from the input face photo and use its PCA representation in the 3D caricature shape space to establish correspondences between the input photo and 3D caricature shape; and (3) propose a novel character loss and a novel caricature loss based on previous psychological studies on caricatures. Experiments including a novel two-level user study show that our system can generate high-quality 3D caricatures directly from normal face photos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源