论文标题

有限简单图和相关的有向图的重建猜想

The Reconstruction Conjecture for finite simple graphs and associated directed graphs

论文作者

Hosaka, Tetsuya

论文摘要

在本文中,我们研究了有限简单图的重建猜想。让$γ$和$γ'$成为有限的简单图形,至少具有三个顶点,这样就存在一个$ f:v(γ)\ rightarrow v(γ')$,对于任何v(γ)$中的任何$ v \,存在同组$ nistomorphism $ ϕ_v:v:γ-v \ tog tog togtomγ'f(v)$。然后,我们定义关联的有向图$ \widetildeγ= \widetildeγ(γ,γ',f,f,\ {ϕ_v \} _ {v \ in V(γ)})$,带有两种来自图形$γ$的箭头和$γ'$ f $ f $ f $ f $ f $ f $ f $ f $ f $ f。 $ \ {ϕ_V \} _ {v \ in V(γ)} $。通过研究相关的有向图$ \widetildeγ$,我们研究了两个图$γ$和$γ'$同构的何时。

In this paper, we study the Reconstruction Conjecture for finite simple graphs. Let $Γ$ and $Γ'$ be finite simple graphs with at least three vertices such that there exists a bijective map $f:V(Γ) \rightarrow V(Γ')$ and for any $v\in V(Γ)$, there exists an isomorphism $ϕ_v:Γ-v \to Γ'-f(v)$. Then we define the associated directed graph $\widetildeΓ=\widetildeΓ(Γ,Γ',f,\{ϕ_v\}_{v\in V(Γ)})$ with two kinds of arrows from the graphs $Γ$ and $Γ'$, the bijective map $f$ and the isomorphisms $\{ϕ_v\}_{v\in V(Γ)}$. By investigating the associated directed graph $\widetildeΓ$, we study when are the two graphs $Γ$ and $Γ'$ isomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源