论文标题
通过对抗性训练的大规模最佳运输与周期一致性
Large-Scale Optimal Transport via Adversarial Training with Cycle-Consistency
论文作者
论文摘要
大规模最佳运输的最新进展极大地扩展了机器学习中的应用程序方案。但是,现有方法要么不明确学习传输图,要么不支持一般成本功能。在本文中,我们提出了一种大规模最佳运输的端到端方法,该方法直接解决了传输图,并且与一般成本函数兼容。它通过随机神经网络对传输图进行建模,并通过对抗训练对边际分布的约束进行建模。可以通过采用自行段限制来进一步扩展提出的框架,以学习Monge Map或最佳的培养。我们验证了提出的方法的有效性,并证明了其在具有大规模现实世界应用的现有方法(包括域的适应性,图像到图像翻译和色彩传递)的现有方法上的出色性能。
Recent advances in large-scale optimal transport have greatly extended its application scenarios in machine learning. However, existing methods either not explicitly learn the transport map or do not support general cost function. In this paper, we propose an end-to-end approach for large-scale optimal transport, which directly solves the transport map and is compatible with general cost function. It models the transport map via stochastic neural networks and enforces the constraint on the marginal distributions via adversarial training. The proposed framework can be further extended towards learning Monge map or optimal bijection via adopting cycle-consistency constraint(s). We verify the effectiveness of the proposed method and demonstrate its superior performance against existing methods with large-scale real-world applications, including domain adaptation, image-to-image translation, and color transfer.