论文标题

用于参数动力学系统数据驱动建模的P-AAA算法

The p-AAA algorithm for data driven modeling of parametric dynamical systems

论文作者

Rodriguez, Andrea Carracedo, Balicki, Linus, Gugercin, Serkan

论文摘要

AAA算法已成为单个变量函数的数据驱动有理近似的流行工具,例如线性动力学系统的传输函数。在许多突出应用中出现的参数动态系统的设置中,要建模的基础(传输)函数是多元函数。考虑到这一点,我们开发了用于近似多元函数的AAA框架,其中大约以多元重中心形式构造了大约。该方法是数据驱动的,从某种意义上说,它不需要访问完整的状态空间模型,并且只需要功能评估。我们讨论了矩阵值函数(即多输入/多输出动态系统)的扩展,并提供了与切向插值理论的连接。几个数字示例说明了提出的方法的有效性。

The AAA algorithm has become a popular tool for data-driven rational approximation of single variable functions, such as transfer functions of a linear dynamical system. In the setting of parametric dynamical systems appearing in many prominent applications, the underlying (transfer) function to be modeled is a multivariate function. With this in mind, we develop the AAA framework for approximating multivariate functions where the approximant is constructed in the multivariate barycentric form. The method is data-driven, in the sense that it does not require access to full state-space model and requires only function evaluations. We discuss an extension to the case of matrix-valued functions, i.e., multi-input/multi-output dynamical systems, and provide a connection to the tangential interpolation theory. Several numerical examples illustrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源